18ME0321 QUESTION BANK 2020-21

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583 (Autonomous)

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Metrology & Measurements (18ME0321) Course & Branch: B.Tech - ME

Year & Sem: III-B.Tech & II-Sem Regulation: R18

<u>UNIT –I</u>

1.	a)	What is Taylor's principle?	L1	CO1	2M
	b)	Define limits and tolerances.	L1	CO1	2M
	c)	What indicates 50H7f8?	L1	CO1	2M
	d)	Differentiate between Allowance and Tolerance.	L2	CO1	2M
	e)	List out types of fits.	L2	CO1	2M
2.		Define fit? With neat sketch describe three types of fits.	L1	CO1	10M
3.		Construct the conventional diagram of limits and fits and explain all terms.	L6	CO1	10M
4.		In a hole and shaft assembly of 30mm nominal size, the tolerances for hole	L5	CO1	10M
		and shaft are as specified below: Hole: $30^{+0.02}$ mm Shaft: $30^{-0.040}$ mm			
		Determine: i) Maximum and minimum clearance obtainable ii) Allowance			
		iii) Hole and shaft tolerance iv) The type of fit.			
5.		Between two mating parts of 100 mm basic size, the actual interference fit	L6	CO1	10M
		is to be from 0.05mm to 0.12mm. The tolerance for hole is the same as the			
		tolerance for the shaft. Find the size of the shaft and the hole on (a) hole			
		basis unilateral system b) Shaft basis unilateral system.			
6.	a)	Define Maximum, Minimum Metal limits and Maximum, Minimum	L1	CO1	5M
		clearances with the help of neat sketches.			
	b)	Distinguish unilateral and bilateral tolerance system.	L4	CO1	5M
7.	a)	Distinguish between 'Hole basis system' and 'Shaft basis system' of fits.	L4	CO1	5M
	b)	Define deviations. Explain types of deviations with the help of sketches.	L1	CO1	5M
8.	a)	Explain selective assembly.	L2	CO1	5M
	b)	List out types of assembly systems? Elaborate interchangeability.	L6	CO1	5M
9.		Describe briefly the principal features of the Indian standard System of	L1	CO1	10M
		limits and fits.			
10.		What are the different types of gauges? Explain any four limit gauges.	L1	CO1	10M

QUESTION BANK 2020-21

<u>UNIT –II</u>

1.	a)	What are the purposes of Vernier calipers	L1	CO2	2M
	b)	Why micrometer carries a ratchet stop?	L2	CO2	2M
	c)	Mention the features of a Universal Bevel Protractor	L2	CO2	2M
	d)	what is mean by wringing process of slip gauge	L1	CO2	2M
	e)	Draw the BIS symbol for surface roughness.	L1	CO2	2M
2.	a)	Elaborate the construction of Vernier height gauge	L6	CO2	5M
	b)	Name the two types of dial indicators, Explain dial indicator with neat	L1	CO2	5M
		sketch.			
3.	a)	What is mean by wringing process? Describe briefly grades of slip gauges.	L1	CO2	5M
	b)	What is procedure for buildup slip gauge blocks for required dimension	L1	CO2	5M
4.		State the principle of a micrometer. Explain with neat Sketch an outside	L2	CO2	10M
		micrometer.			
5.		Construct in detail the working of the Sine Bar to measure unknown angle	L6	CO2	10M
6.	a)	Simplify the angle measuring method involved in Bevel protractors with a	L4	CO2	6M
		neat sketch.			
	b)	Explain about angle gauges.	L2	CO2	4M
7.		Express the following methods of qualifying surface roughness:	L2	CO2	10M
		(a) Ra value. (b) RMS value. (c) Rz value.			
8.		Briefly describe the construction, principle and operation of Talysurf with a	L1	CO2	10M
		neat sketch.			
9.	a)	Explain BIS symbols for indication of surface finish.	L2	CO2	5M
	b)	Name the different terms used in surface roughness.	L1	CO2	5M
10.		Explain with the help of neat sketches the principle and construction of an	L2	CO2	10M
		auto collimator			
		<u>UNIT –III</u>			
1.	a)	List out elements of screw thread	L1	CO3	2M
	b)	What are errors in threads	L1	CO3	2M
	c)	What is the best size wire	L1	CO3	2M
	d)	Name the various types of errors in gears	L2	CO3	2M
	e)	List out tools required for machine alignment	L1	CO3	2M
2.	,	List out the various elements that you would measure in a screw thread?	L1	CO3	10M
		·			

18	18ME0321 QUESTION BA		BANK	2020-	·21
		Also list the instruments that are required for measuring these elements			
3.		Explain three wire method of measuring effective diameter of scre-	w L1	CO3	5
		threads.			5
		What are the errors and its causes in screw threads?	L1	CO3	5
4.		Evaluate (i) Outer diameter. (ii) Effective diameter.	L5	CO3	_
		(iii) Core diameter. (iv) Pitch diameter			5
		Describe measurement of effective diameter with two wire method with	th L1	CO3	_
		neat sketch			5
5.		Sketch and explain working and application of versatile instrument of	of L2	CO3	1
		toolmakers microscope			10
5.	a)	Explain the elements of gear tooth profile with neat sketch.	L2	CO3	5
	b)	Classify the various sources of errors in manufacturing gears.	L4	CO3	5
7.	a)	Explain with neat sketch the gear tooth profile measurement.	L2	CO3	5
	b)	Describe the parkinson's gear tester and state its limitations	L1	CO3	4
3.	a)	Describe measurement of pitch by base Tangent method.	L1	CO3	4
	b)	Elaborate method of measuring the gear tooth thickness by Constant Chor	rd L1	CO3	-
		method			-
9.	a)	With the help of an illustration, explain any four alignment tests on lathe	L2	CO3	7
	b)	Discuss the factors influenced working accuracy of the machine tool.	L6	CO3	3
Э.		With the help of an illustration, explain any four alignment tests on milling	ng L2	CO3	1
		machine.			1
		<u>UNIT –IV</u>			
1.	a)	What is transducer? List out active and passive transducers	L1	CO4	2
	b)	What is a piezoelectric sensor?	L1	CO4	2
	c)	List out contact and non contact tachometers?	L2	CO4	2
	d)	How the resistance strain gauge is functioning?	L1	CO4	2
	e)	Derive the expression for gauge factor in a strain gauge.	L2	CO4	2
2.		Classify digital transducers? Elaborate piezoelectric effect and sketch with	th L6	CO4	1
		neat Piezo-electric transducer.			
		List out Displacement transducers? Explain inductive transducer with	th L2	CO4	1
3.		suitable sketch.			
3.		suitable sketch.			
 3. 4. 	a)	Define transducer? List and explain two important and closely related parts	s L1	CO4	4

18ME	18ME0321 QUESTION BA		2020-21	
5.	Prove variable Capacitance Transducer is the most common form of measurement of displacement?	L5	CO4	101
6.	Classify digital transducers? Elaborate piezoelectric effect and sketch with neat Piezo-electric transducer.	L6	CO4	101
7. a)	Classify measurement of angular speed tachometers and list out tachometers.	L2	CO4	5N
b)	Explain working of Photo-electric tachometer	L2	CO4	51
8. a)	Describe the principle of bonded and un bonded strain gauges?.	L1	CO4	51
b)	List the essential characteristics required for the backing material of a bonded strain gauge	L1	CO4	51
9. a)	Define strain rosette? Depending on the arrangement of strain gauges, list out strain rosettes	L1	CO4	5]
b)	Elaborate Rectangular strain gauge rosette	L6	CO4	5]
0. a)	What is the principle of strain gauge? Explain the method of usage for measurement of strains.	L1	CO4	5]
b)	Explain working of Electrical Strain Gauge. <u>UNIT -V</u>	L2	CO4	5]
. a)	What is meant by calibration?	L1	CO5	21
b)	Define seebeck effect and peltier effect	L1	CO5	2
c)	Discuss limitations of elastic diaphragm gauge.	L1 L2	CO5	2
d)	What is measurement of principle of load cell?	L2 L1	CO5	2
e)	How does a torque meter work?	L2	CO5	2
2.	List out thermal expansion methods and describe electrical resistance sensor of RTD with neat sketch	L1	CO5	10
3.	Discuss in detail about the principle and working of thermo couple with neat sketch	L6	CO5	10
l.	Sketch a Mcleod gauge and explain working principles. Describe applications and limitations	L1	CO5	10
5. a)	Define pyrometer? With neat sketch elaborate total radiation pyrometer	L1	CO5	5
b)	What is formula for dead weight tester? Discuss the Dead Weight gauge in detail.	L1	CO5	5
5. a)	Define manometer? Elaborate the U- tube Manometer in detail.	L6	CO5	5

_1	18ME0321 QUESTION BA		ANK	2020-21	
_		transducer with parts.			
7.	a)	Explain about Diaphragm gauge in detail. write advantages.	L4	CO5	5M
	b)	List the essential characteristics required for the backing material of a	L1	CO5	5M
		bonded strain gauge			
8.	a)	Discuss the U- tube Differential Manometer in detail. derive the expression	L6	CO5	5M
		for pressure difference.			
	b)	List out very high pressure measuring instruments and draw with neat	L1	CO5	5M
		sketch C type Bourdon tube			
9.		What are the methods employed for the measurement of torque? Sketch a	L1	CO5	10M
		strain gauge torque meter and elaborate it.			
10.		What are the basic methods of force measurement? Elaborate elastic force	L1	CO5	10M
		devices with neat sketch			